已知椭圆的焦点是F1(-1,0),F2(1,0),p为椭圆上一点,且|F1F2|是|pF1|和|pF2|的等差中项.求椭圆的方程.
人气:366 ℃ 时间:2019-08-20 01:11:46
解答
可设椭圆方程为(x²/a²)+(y²/b²)=1,(a>b>0).由题设知,|PF1|+|PF2|=2a=2|F1F2|=2×2.===>a=2.又c=1,∴b²=a²-c²=3.∴椭圆方程为(x²/4)+(y²/3)=1.
推荐
- 已知椭圆的焦点F1(-1,0),F2(1,0),P是椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项,若点P在第
- 椭圆的两个焦点是F1(-1,0),F2(1,0),P为椭圆上一点,切|F1F2|是|PF1|与|PF2|的等差中项,椭圆方程为
- 已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项. (1)求此椭圆方程; (2)若点P满足∠F1PF2=120°,求△PF1F2的面积.
- 已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项. (1)求此椭圆方程; (2)若点P满足∠F1PF2=120°,求△PF1F2的面积.
- 已知椭圆的焦点是F1(-1,0),F2(10),P是椭圆上一点,且F1F2是PF1与PF2的等差中项
- 【急】x^2-2(m+n)x-mn(m-2)(n+2) 因式分解
- 在三角形中,重心是什么的交点,内心是什么的交点,外心是什么的交点~
- 在饮湖上初晴后雨中,诗人( )用( )来比喻西湖,因为而只有一个共同点(
猜你喜欢