设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 aη1+bη2 ..
求通解和题目给的A的秩为3有关系吗,具体是什么关系,
人气:484 ℃ 时间:2020-01-27 03:15:02
解答
因为非齐次线性方程的通解的形式,是与之相应的齐次线性方程的通解,以及该非齐次线性方程的一个特解的组合,如(非齐次线性方程特解+k1*齐次线性方程的解1+k2*齐次线性方程的解2).其中齐次线性方程的解之间线性无关.
而齐次线性方程的线性无关解(也就是基础解系)的个数与A的秩有关,它等于未知数的个数减去A的秩.
也就是说,在题中所给的方程组,其相应的齐次线性方程有4-3=1个基础解系,那么非齐次线性方程的通解形式就是(非齐次线性方程特解+k1*齐次线性方程的解).
因为(η1 - η2)是AX=0的齐次线性方程的一个通解(书上有),所以该非齐次线性方程的通解的形式为[η1 +k1*(η1 - η2)]=aη1+bη2
推荐
- 设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为
- 设A是3x4矩阵,其秩为3,若m1 m2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为?望
- A为4×3矩阵,a1,a2,a3是非齐次线性方程组Ax=b的三个线性无关的解,求Ax=b的通解.A的秩是多少.
- 已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且向a,b,c是3个不同解向量,则通解是
- 设A是3x4矩阵,其秩为3,若£1,£2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为多少?
- 2道有趣数学题,回答完后定加分,你要多少分呢
- 某氮肥NH4HCO3中混有少量(NH4)2CO3,现采用下列方案测定该氮 肥中(NH4)2CO3的质量分数:称取5.7 g上述样品
- 先写出下面各组分数的最小公分母,再化成同分母分数
猜你喜欢