a,b,c是△ABC的三边长,且关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.
人气:488 ℃ 时间:2019-08-18 13:15:06
解答
证明:由原方程,得
(b+c)x2-2ax-b+c=0,
∵关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,
∴△=4a2-4(b+c)(-b+c)=0,
即a2-c2+b2=0,
∴a2+b2=c2,
∴这个三角形是直角三角形.
推荐
- 已知abc为三角形三边长,且方程b(x^2-1)-2ax+c(x^2+1)=0有两个相等吨实数根.判断形状
- a,b,c是△ABC的三边长,且关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.
- 设△ABC的三边长分别为a、b、c,a、b是方程x的平方-(2+c)x+2(c+1)=0的两个实数根.
- 初三数学,设△ABC的三边长为a,b,c 其中a,b 分别是方程x²-(c+2)x+2(c+1)=0的2个实数根
- 已知a、b、c是△ABC的三条边长,且关于x的方程(c-b)x²+2(b-a)x+a-b=0有两个相等的实数根,判断△ABC是什么形状的三角形
- 有一直角三角形,已知一直角边是25厘米,另一直角边是20厘米,求另一边
- 描写颜色美丽、鲜艳、丰富的四字词语
- (我们说好的,要一起走过3年)用英文怎么说
猜你喜欢