已知:在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P,作BQ⊥ AD,垂足为Q
求证:BP=2PQ 额,没图,
人气:499 ℃ 时间:2019-08-27 00:00:52
解答
先用“角边角”证明△ABE≌△CAD,
由于 AB=AC,∠BAC=∠C=60°,AE=CD,
所以 △ABE≌△CAD,
那么∠ABE=∠CAD
再证明∠BPQ=60°.
三角形的2个内角和等于第三个角的补角
所以:∠BPQ=∠ABE+∠BAD=∠CAD+∠BAD=60°
因此,∠PBQ=30°
所以BP=2PQ思路是什么啊,你怎么预先知道要证明△ABE全等于△ADC啊多做,首先逆向BP=2PQ且处于直角行明显得证∠BPQ=60显然得利用bpq=abp+bad 1下一步是关键线段AE=CD与角b关系不大,与角c呢关系大但太独立,所以用角a角a=bad+cad 2由1.2可知下部证明abp=cad下面证明△ABE全等于△ADC
推荐
猜你喜欢
- 一项工程,甲独坐要9小时,乙独做要12小时,如果甲先做1小时,然后乙接替甲做1小时,再由甲接替
- 冷水吸收的热量:Q吸=cm(t1-t0),∵Q吸=Q放,∴热水放出的热量:Q放=c2m(t0′-t1)=cm(t1-t0),
- 英语翻译
- 4a-2b+c=o,16a+4b+c=0,(4ac-b^2)/(4a)=9 怎么解
- 已知两个数的积是3072,最大公约数是16,求这两个数答案?
- jean is as busy as a bee的意思?
- He is running这句话为什么run要加ning
- 棱长六米的正方体水池占地面积是36平方米.是对还是错