>
数学
>
求3个极限:limx→0 sin3x/2x=?limx→∞ xsin(1/x)=?limx→0 [sin(1/x)]/(1/x)=?
人气:484 ℃ 时间:2020-05-21 08:02:44
解答
limx→0 sin3x/2x
=lim sin3x/3x *(3/2)
根据重要的极限
=(3/2)*1
=3/2
limx→∞ xsin(1/x)
=lim sin(1/x)/(1/x)
根据重要的极限
=1
limx→0 [sin(1/x)]/(1/x)
=lim x*sin(1/x)
因为x为无穷小量,sin(1/x)为有界量
无穷小量*有界量=无穷小量
即=0
根据重要的极限是:
limx→0 (sinx)/(x)=1
有不懂欢迎追问
推荐
limx趋向0{xsin(x分之一)-x分之一sinx}的极限
limx→2(x^2-4)/sin(x-2),求极限
limx→∞x*sin(2x/(x^2+1))的极限
limx趋向于0[xsin(3/x)+tanx/2x]的极限
limx→+∞ sin(π/x)*sinπx的极限
设y=ln(1+x)则y’= y”=
英语翻译
函数y=(cosθ)x2-4(sinθ)x+6对任意实数x都有y>0,且θ是三角形的内角,则θ的取值范围是_
猜你喜欢
电梯平均运行载重问题,
要准确,浙江省杭州市三墩镇颐景园小区荷风苑11幢2单元XXX室 怎么翻译成英文
我国国家的本质是什么?
邻甲氧基苯甲醛的结构式
二元二次方程组习题
水中的微生物有哪些
公路上晒粮怎么举报?
DNA产生的mRNA翻译完成后哪里去啦?要是的话,怎么分的,分成了什么?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版