> 数学 >
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m、n∈R
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m、n∈R,m>0.
(1)求m与n的关系表达式;
(2)求f(x)的单调区间;详细过程
人气:414 ℃ 时间:2020-05-30 10:20:43
解答
f(x)=mx3-3(m+1)x2+nx+1
f'(x)=3mx^2-6(m+1)x+n
3m-6(m+1)+n=0
n=3m-6
(2)求f(x)的单调区间;
f'(x)=3mx^2-6(m+1)x+n=3mx^2-6(m+1)x+3m-6
x1+x2=2(m+1)/m=2+2/m
另x1=1 那么 x2=(m+2)/m
x2>x1
(-∞;1)、((m+2)/m;+∞)增 (1;(m+2)/m)减
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版