>
数学
>
如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F,试证明:BF⊥CE.
人气:110 ℃ 时间:2020-01-29 23:22:51
解答
证明:∵∠BAC=90°,
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
BD=CE
AB=AC
∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,又∠ADB=∠CDF,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.
推荐
如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F,试证明:BF⊥CE.
如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F,试证明:BF⊥CE.
(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数; (2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改
如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F,试证明:BF⊥CE.
已知 如图bd ce是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,试说明AG与AF的关系,说明理由
二年级读书体会怎么写
微分几何入门与广义相对论看不懂看什么好
用加减消元法解{x+y=110,40x+20y=2400
猜你喜欢
6名学生玩“掷骰子”的游戏.小红在一个正方体的各面分别写着1、2、3、4、5、6.每人选一个数,然后任意掷
寻找一篇英语关于爱情的文章
爱心就是冬日里的阳光.这句话用的是什么修辞手法.
化学问题②填空题
下列关于晨昏线的所发中,正确的是()
天才表演 用英语怎么说
"人固有一死,或重于泰山,或轻于鸿毛."或"呢?
若一个氨基酸分子有两个羧基,其中一个羧基连接在R基上,则另一个羧基( ) A.与氨基端相连 B.与连有氨基的碳原子相连 C.与氢相连 D.与羧基端相连
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版