> 数学 >
过抛物线y2=2x的对称轴上的定点M(m,0),(m>0),作直线AB交抛物线于A,B两点.
(1)试证明A,B两点的纵坐标之积为定值;
(2)若△OAB的面积的最小值为4,求m的值.
人气:205 ℃ 时间:2020-02-20 18:35:44
解答
(1)设lAB:x=ty+m代入y2=2x得y2-2ty-2m=0,设A(x1,y1),B(x2,y2
△=4t2+8m>0,y1+y2=2t,y1y2=-2m
∵m为常数∴y1•y2=-2m为定值
(2)S△OABS△OAM+S△OBM
1
2
m|y1|+
1
2
m|y2|=
m
2
|y1y2|
=
m
2
(y1+y2)2−4y1y2
=
m
2
4t2+8m
m
2
8m
=4

m
2
8m
=4⇒m=2
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版