所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e.
(2)f′(x)=[x2+(a+2)x-2a2+4a]ex=(x+2a)•[x-(a-2)]ex,
令f′(x)=0,解得x=-2a,或x=a-2,
由a≠
2 |
3 |
以下分两种情况讨论:
①若a>
2 |
3 |
x | (-∞,-2a) | -2a | (-2a,a-2) | a-2 | (a-2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
函数f(x)在x=-2a处取得极大值为f(-2a),且f(-2a)=3ae-2a.
函数f(x)在x=a-2处取得极小值为f(a-2),且f(a-2)=(4-3a)ea-2.
②若a<
2 |
3 |
x | (-∞,a-2) | a-2 | (a-2,-2a) | -2a | (-2a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2.
函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a.