已知:三角形ABC的两边AB.AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根
第三边BC的长为5.试问:k取何值时,三角形ABC是以BC为斜边的直角三角形?
人气:323 ℃ 时间:2019-08-19 14:46:56
解答
AB.AC是x^2-(2k+3)x+k^2+3k+2=0的两个实数根
2k+3>0,k>-3/2
Δ=(-2k-3)^2-4*1*(k^2+3k+2)=1>0
∴k>-3/2
AB+AC=2k+3
AB.AC=k^2+3k+2
当AB²+AC²=5²,三角形ABC是以BC为斜边的直角三角形
则(2k+3)²-2(k²+3k+2)=25
(k+5)(k-2)=0
则k=2(k=-5舍去)
k=2时,三角形ABC是以BC为斜边的直角三角形
推荐
- 已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5. (1)试说明方程必有两个不相等的实数根; (2)当k为何值时,△ABC是以BC为斜边的直角三
- 已知三角形ABC的两边AB,AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,第三边BC长为5.问k取何值时,三角形ABC是等腰三角形,并求三角形的周长?
- 已知三角形ABC的两边AB,AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,第三边的长为5.
- 已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5. (1)试说明方程必有两个不相等的实数根; (2)当k为何值时,△ABC是以BC为斜边的直角三
- 已知三角形的两边AB、AC的长是关于X的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,BC长为5.
- 已知某烃分子中含碳元素和氢元素的质量比为4:1,在标准状态下5.6L气体的质量为7.5克,求此烃的分子式
- 寒假中某一天的温度
- 环境样品梯度稀释,涂布平板法分离微生物时,如何选择不同稀释梯度样品的涂布顺序?为什么?
猜你喜欢