| a |
| c |
| b |
| c |
则(a+b+c)(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1+(sinα+cosα)(1+sinαcosα) |
| sinαcosα |
设t=sinα+cosα,则1<t≤
| 2 |
| t2−1 |
| 2 |
代入得(a+b+c)(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 2 |
| t−1 |
而f(x)=x+
| 2 |
| x |
| 2 |
所以(a+b+c)(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 2 |
| t−1 |
| 2 |
所以M最大值为5+3
| 2 |
故选B
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| M |
| a+b+c |
| 3 |
| 2 |
| 2 |
| a |
| c |
| b |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1+(sinα+cosα)(1+sinαcosα) |
| sinαcosα |
| 2 |
| t2−1 |
| 2 |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 2 |
| t−1 |
| 2 |
| x |
| 2 |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 2 |
| t−1 |
| 2 |
| 2 |