已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3.
(1)证明:函数y=f(x)是R上的减函数;
(2)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
上面第一题我用特殊值带入行吗 就是设 f(3)=f(3)+f(0) 得f(0)=0 f(3)-f(0)<0所以是减函数
还有就是第二题我看答案没看懂 答案变形f(n)=2f(1)+f(n-2)=n*f(1) 我不懂他这为什么2f(1)+f(n-2)=n*f(1)
人气:363 ℃ 时间:2019-10-19 21:03:52
解答
相当于是n个f(1)相加 f(n-2)=f(1)+f(n-3) ∴f(n)=2f(1)+f(n-2)=3f(1)+f(n-3)=……=nf(1) (1)证明 设x1,x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).故f(x)是R上的减函数.(2)证 ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,则有f(x)+f(-x)=f(0),又令a=b=0,可得y=f(x)是奇函数.由于y=f(x)是R上的单调递减函数,∴y=f(x)在[m,n]上也是减函数,故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).由于f(n)=f(1+(n-1)) =f(1)+f(n-1)=… =nf(1),同理f(m)=mf(1).又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m,f(n)=-n.∴函数y=f(x)在[m,n]上的值域为[-n,-m].
推荐
- 已知函数Y=f(x)的定义域为x∈R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
- 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)
- 已知函数y=f(x)的定义域为R,且对任意a,b∈∈R都有f(a+b)=f(a)+f(b),且当x>0时f﹙x﹚<0恒成立,证明
- 已知函数y=f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
- 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b).且当x>0时,f(x)<0恒成立,f(3)=-3. (1)证明:函数y=f(x)是R上的减函数; (2)证明:函数y=f(x)是
- 有一组数据,最大值是98,最小值是63,如果以8为组据,应当分为 —— 组,如果以5分为组距,应分为——— 组
- 英译汉 to be lovely shanghainese,we should be helpful and friendly to others.
- I____(have/has)four pairs of socks.选哪个
猜你喜欢
- 科技节有什么关于科学的知识,例如(科普知识、科学名言)还有什么?
- 甲、乙两人赛跑,甲跑到全程2/3 处时,乙跑到全程的75% 处,这时甲乙两人相距1/4千米.
- 有一个两位数,其十位数是个位数的一半,如果把十位数字与个位数字的位置对调后,则对调后的两位数比原来的两位数的2倍小6,求一个两位数,请列出一元一次议程
- 永字加偏旁组词
- 在三角形ABC中,三边之长为3,1-2a,8.求a的取值范围和三角形ABC的周长的最大值
- 分解因式-3x^n +6x^n-1
- 英语翻译
- 设集合A=2X²+3px+2=0,b=2X²+x+q=0,其中p,q为常数,x∈R,当A∪B=½求p,q的值和A∪B