>
数学
>
若函数f(x)=2ax
2
-x-1在(0,1)内恰有一个零点,则a的取值范围是( )
A. (1,+∞)
B. (-∞,-1)
C. (-1,1)
D. [0,1)
人气:207 ℃ 时间:2019-08-21 05:39:22
解答
当△=0时,a=-
1
8
,此时有一个零点x=-2,不在(0,1)上,故不成立.
∵函数f(x)=2ax
2
-x-1在(0,1)内恰有一个零点,∴f(0)f(1)<0,
即-1×(2a-1)<0,解得,a>1,
故选A
推荐
已知a是实数,函数f(x)=2ax2+2x-3-a 如果函数y=f(x)在区间【-1,1】上有零点,求a的取值范围
函数f(x)=2x−2/x−a的一个零点在区间(1,2)内,则实数a的取值范围是_.
若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是( ) A.0<a<1 B.0<a<12 C.a>2 D.a>1
若函数f(x)=ex−a−2/x恰有一个零点,则实数a的取值范围是_.
a是实数,函数f(x)=2ax2+2x-3-a.如果函数y=f(x)在区间[-1,1]上有零点,则a的取值范围是_.
怎么写这件事让我懂得了不少于500字初一作文
英语翻译
反文旁的字有哪些
猜你喜欢
加数与被加数
形容含舌的成语
一撇一捺都有什么字
已知函数f(x)=2ax+4,若在区间[1,2]上存在零点,求a的取值范围
王阿姨到超市买水果,她带的钱正好可以买12千克苹果核18千克梨,↓
近似数的概念是什么,精确到0.1-0.01-0.
已知奇函数f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且α>β,则下列结论正确的是( ) A.f(cos α)>f(cos β) B.f(sin α)>f(sin β) C.f(sin α)>f(cos β) D.f
买一辆汽车,分期付款购买要加价7%,如果改用现金则可享受“九五折”优惠.王叔叔算了一下,发现分期付款现金购买要多付7200元,你知道这辆汽牛原价是多少元?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版