点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.
人气:243 ℃ 时间:2020-05-31 18:25:51
解答
把椭圆2x
2+3y
2=12化为标准方程,
得
+=1,
∴这个椭圆的参数方程为:
,(θ为参数)
∴x+2y=
cosθ+4sinθ,
∴
(x+2y)max==.
故答案为:
.
推荐
- 求满足条件2x-3y=4,x+2y≥1的x,y的取值范围?
- 点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为_.
- 设P(x,y)是椭圆2x方+3y方=12的一个动点,求x+2y得取值范围
- 如果“x”,“y”满足两个条件“2x-3y=4","x+2y>1”,求x,y的取值范围.
- p是椭圆x2/4+y2=1上的点,求p到直线:2x+3y-8=0的距离的取值范围
- 用1角、2角和5角三种人民币组成1元钱,有多少种不同的方法?
- 把氢氧化钡加人到硫酸铝钾中 化学反应方程式是怎样的...最好能分步...
- 水面清圆一一风荷举中哪一个字用得好
猜你喜欢