设函数f(x)连续,在x=0处可导,且f(0)=0记函数g(x)=1/x²∫tf(t)dt则g'(0)=?
上面是x不等于0的情况下 x=0时g(x)=0
人气:216 ℃ 时间:2019-09-22 09:54:14
解答
首先看g(x)在x=0点是不是连续:
lim {x->0} g(x) = lim {x->0} ∫tf(t)dt / x^2
= lim {x->0} xf(x) / 2x
= f(0)/2
= 0
所以lim {x->0} g(x) =g(0)
g(x)在x=0点连续,因此可以讨论g'(0)的问题.
g'(0)的导数要用定义,分左右导数,分开求.
g'(0+) = lim {x->0+} [g(x)-g(0)] / (x-0)
=lim {x->0+} ∫tf(t)dt / x^3
=lim {x->0+} xf(x) / 3x^2
=lim {x->0+} f(x)/3x
=f'(0) / 3
同理:
g'(0-) = lim {x->0-} [g(x)-g(0)] / (x-0)
=f'(0) / 3
左右导数相等
所以g'(0) = f'(0) / 3
推荐
- 设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函数f(x).
- 设f(x)为可导函数,且满足∫(上限为x下限为0)tf(t)dt=x^2+f(x),求f(x)
- 关于微分方程与定积分的题目,求可导函数f(x),使得∫[x,0]f(t)dt=x+∫[x,0]tf(x-t)dt
- 已知函数f(x)在[0,1]上可导,f(x)>0,f(0)=1,且在[0,1)满足 等式 f(x)-1/(x-1)∫(1,x)tf(t)dt=0,求函数f(x)
- f(x)=x²+∫(1,0)xf(t)dt+∫(2,0)f(t)dt求函数f(x)
- 秘鲁的秘是读mi,还是bi?
- 关于结构化程序设计的基本知识
- How many computers are there in this room?___They aremoved to anther room.
猜你喜欢