f(0)=c=2,对称轴为-b/(2a)=1,所以,b=-2a
f(x)=ax^2-2ax+2<=2x+2 恒成立,所以,ax^2-2(a+1)x<=0,说明a=-1
因此,f(x)=-x^2+2x+2
因为f(x)=-(x-1)^2+3<=3
所以,值域的最大值也必须小于等于3,即3n<=3, n<=1
因为f(x)对称轴为1,所以若n<=1,说明定义域在对称轴左侧,即[m,n]内单调递增
所以,m,n应该是f(x)=3x的两个根,
-x^2+2x+2=3x
解得,x^2+x-2=0
m=-2, n=1ax^2-2(a+1)x<=0,说明a=-1为什么a=-1???对的