已知直线y=kx+1与双曲线3x^2-y^2=1相交于A,B两点,1,以AB为直径的圆过原点,求实数k的值 2,是否存在这样的实数k,使A,B关于直线y=1/2 *x对称?如果存在,求出k的值,不存在说明理由
人气:341 ℃ 时间:2019-10-17 07:47:09
解答
y=kx+1与3x^2-y^2=1联立消去y得:
(3-k^2)x^2 -2kx-2=0,由韦达定理:
x1+x2=2k/(3-k^2),x1·x2=-2/(3-k^2).
1、设A(x1,y1)、B(x2,y2),∵AB为直径的圆过原点,∴x1·x2+y1·y2=0.
其中,y1+y2=k(x1+x2)+2=6/(3-k^2),y1·y2=(kx1+1)(kx2+1)=1.
代入得:k=±1.
2、A,B关于直线y=1/2 *x对称,则AB的斜率=-2,且A、B的中点坐标满足方程y=1/2 *x,即有y1+y2=(x1+x2)/2.
∵k=-2时,y1+y2=-6,(x1+x2)/2=2,-6≠2,∴k不存在.
推荐
- 直线l:y=kx+1与双曲线C:3x^-y^=1相交于不同的A,B两点,
- 已知直线y=kx+1与双曲线3x^2-y^2=1相交于A,B两点,当K为何值时,以AB为直径的圆经过坐标原点
- 直线Y=KX+1和双曲线3X^2-Y^2=1相交于A.B两点.
- 已知直线y=kx+1与双曲线3x^2-y^2=1相交于A,B两点,1,以AB为直径的圆过原点,求实数k的值
- 直线y=kx+1与双曲线3x^2-y^2=1相交与两点A,B,(1)当K为何值时,以AB为直径的
- 高一物理(共点力的平衡)②
- would like,could like
- 某人尿液中有血细胞与蛋白质 .是肾小球出了问题还是肾小球
猜你喜欢