>
数学
>
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)求函数f(x)的零点,若函数f(x)的最小值是-4,求a
人气:397 ℃ 时间:2020-02-24 10:39:51
解答
由 1-x>0 且 x+3>0 ,得函数定义域是:(-3,1),
令 f(x)=loga[(1-x)(x+3)]=0,
则 (1-x)(x+3)=1,
所以 x^2+2x-2=0,
解得f(x)的零点为 x1=-1-√3,x2=-1+√3.
因为 0
推荐
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)求函数f(x)的零点,若函数f(x)的最小值是-4,求a
函数f(x)=loga(1-x)+loga(x+3)、(0
f(x)loga(1-x)+loga(x+3) (0
已知函数f(x)=loga(1-x)+log(x+3)(0
已知函数f(x)=loga(x+1)+loga(3-x)(0
在氯化铝和氯化铁混合溶液中,先加入过量的碘化钾溶液,再加入足量的硫化钠溶液,所得到的沉淀物是
你从麦哲伦船队环球航行中得到什么启示?
什么是土壤离子吸附与交换作用
猜你喜欢
一天强强安装好一只3W的节能灯,告诉爷爷这盏节能灯让它通宵亮着,这样你夜间常起订就方便安全了,爷爷听了直摇头说,这样太浪费了,强强说不会的1kw.h的电费是0.42元,如果每晚灯亮
理想 流沙河
李白《送友人》的赏析
直线y=x+b(b属于R)与椭圆y^2/2+x^2=1相交于A,B两点,则线段AB中点的轨迹方程为
一个薯片盒的底面半径是3厘米,高是10厘米.每平方米的纸最多能做几个薯片盒的侧面包装纸?
AB=AC,DB=DC,∠ABC的平分线BM交AD于M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径,求证:
Mark's father visited Rose Garden School yesterday改为同义句!
在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,则三角形一定是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版