已知P为角AOB内一点,分别作P关于OA,OB的对称点P1,P2,连接P1,P2,交OA于M,OB于N若P1P2等于10
求三角形PMN的周长
人气:314 ℃ 时间:2020-05-05 14:24:50
解答
答案是 10,
因为OA,OB分别平分垂直PP1,PP2,所以等边三角型PP1M,等边三角形PP2N的边MP1=MP,NP2=NP,而由题意得P1P1=MP1+MN+NP2=10
所以三角形PMN的周长=MP+MN+NP=MP1+MN+NP2=10
推荐
- 如图,若点P为角AOB内一点,P关于OA、OB的对称点分别是P1、P2,线段P1P2交OA于点M,交OB于点N,若P1P2=7CM,求三角形PMN的周长
- 已知:如图,∠AOB内一点P,P1,P2分别P是关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是( ) A.3cm B.4cm C.5cm D.6cm
- 已知P为角AOB内一点,分别作P关于OA,OB的对称点P1,P2,连接P1,P2,交OA于M,OB于N若P1P2等于8cm,求三角形pmn
- 如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于点M,交OB于点N,P1P2=15,则△PMN的周长为( ) A.14 B.15 C.16 D.17
- 已知角AOB内一点P,点P关于OA,OB的对称点分别为P1,P2,并连结P1,P2交OA于M,OB于N,若P1P2=5cm,
- 氧气与二氧化碳在血液中的运输与特点
- 1928年奥运会结束后,国际足联召开代表会议,一致通过决议,举办四年一次的世界足球锦标赛.至今,总共举办过( )届的世界足球锦标赛.
- 直角坐标系中,以P(2,1)为圆心,r为半径的圆与坐标轴恰好有三个公共点,则r的值为_.
猜你喜欢
- 王奶奶用篱笆靠墙围了一个半圆形的鸡场.篱笆的全长为28.26米,鸡场的面积是多少平方米?
- 有一堆钢管共18层,上面第一层有5根,下面第一层都比上一层多一根,这堆钢管共有多少根?
- “澳大利亚是世界上唯一覆盖整个大陆的国家,从北到南距离为3220公里,从东到西3860公里,面积大体相当于
- 铁丝在氧气中燃烧的化学方程式可以读作
- 在100克盐水中,盐与水的比是1:9,那么盐水中水的质量是?甲乙两数的比是5比4,如果甲数是40,则乙数是?
- 巧连数中的破麦剖梨是什么意思?
- 习题19.2 1——3题答案
- 在一条长2500米的公路两侧架设电线杆,每隔50米架一根(两端都架设).