正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM⊥MN,设MB=x
(1)证明:△ABM∽△MCN;
(2)若四边形ABCN的面积等于9,求x的值;
(3)当M点运动到什么位置时,以A、B、M为顶点的三角形和以A、M、N为顶点的三角形相似.
人气:456 ℃ 时间:2020-04-05 09:46:56
解答
(1)证明:如右图所示,
∵AM⊥MN,
∴∠AMB+∠NMC=90°,
又∵四边形ABCD是正方形,
∴∠B=∠C=90°,
∴∠BAM+∠AMB=90°,
∴∠NMC=∠MAB,
∴△ABM∽△MCN;
(2)∵△ABM∽△MCN,
∴AB:BM=CM:CN,
∴CN=x(4-x)4,
∴S四边形ABCN=12×(4+x(4-x)4)×4=9,
解得x1=2+2,x2=2-2,
故x=2+2或x=2-2;
(3)∵△ABM∽△AMN,
∴AB:CM=AM:MN,又MB=x,
AM=42+x2,
MN=MC2+NC2=(4-x)2+[x(4-x)4]2
42+x2:(4-x)2+[x(4-x)4]2=44-X,
∴4:x=42+x2:(4-x)2+[x(4-x)4]2,
4(4-x)2+[x(4-x)4]2=x42+x2,
16[(4-x)2+x2(4-x)216]=x2(16+x2),
(4-x)2(16+x2)=x2(16+x2),
16-8x=0,
解得x=2.
推荐
- 2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
- 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直, (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式; (3)梯形A
- 正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM⊥MN,当M运动到什么位置时,Rt△ABM∽Rt△AMN
- 正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?
- 正方形ABCD边长4,M,N分别为BC,DC上两动点,当点M在BC上运动时始终保持AM⊥MN,当CN长为3/4
- 1.——that he stayed at home all day without meeting anyone.
- 我数学还不错,但英语很烂,永远在75分左右;还有地理烂啊!我是广东省高二文科生..
- 甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少.
猜你喜欢