如果a2+b2+c2=7950,a,b,c均为质数,a+b+c的最小值是多少
人气:184 ℃ 时间:2020-01-31 03:09:25
解答
按照等式a2+b2+c2=7950,因a、b、c都为质数,因右边为偶数,则a、b、c只能是奇、奇、偶的组合,那么其中有一个必为2(2是唯一的一个偶质数),今设a=2
原题化为b^2+c^2=7946(b、c为质数),求b+c的最小值
因7946/2,开平方不为整数,故b≠c
今设b<c,
因质数平方后,尾数只有三种可能:1,5,9
那么,b^2、c^5尾数可能的组合为:1,5;5,1;
在这两种组合中,b^2、c^5中必有一数个位为5,那么b、c中必有一数个位为5;但因b、c为质数,则b必为5(个位为5的质数唯有5,且前已设b<c)
于是c^2=7946-25=7921
c=89
检验,89确为质数
故原方程只有一组解,a、b、c分别2、5、89
那么a+b+c=2+5+89=96
推荐
- 若a+b+c=1,则a2+b2+c2最小值
- 已知a+b+c=1,m=a2+b2+c2,则m的最小值为_.
- 已知实数a,b,c满足a2+b2=1,b2+c2=2,c2+a2=2,则ab+bc+ca的最小值为( ) A.52 B.12+3 C.−12 D.12−3
- 已知实数a,b,c满足a2+b2=1,b2+c2=2,c2+a2=2,则ab+bc+ca的最小值为( ) A.52 B.12+3 C.−12 D.12−3
- 已知a,b,c是正数,且有a2+c2=16,b2+c2=25,则a2+b2最小值是多少?(a2表示a的平方,其它的也一样.)
- 在复数范围内-1的立方根是多少?
- 用按部就班造句
- 闵其苗之不长,其子趋而往视这,助之长者,非徒无益而又害之四句中的之有哪一个用法不同
猜你喜欢