我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,己知F1,F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°,则这 一对相关曲线中椭圆的离心率是______.
人气:311 ℃ 时间:2020-03-22 03:45:04
解答
设F1P=m,F2P=n,F1F2=2c,由余弦定理得(2c)2=m2+n2-2mncos60°,即4c2=m2+n2-mn,设a1是椭圆的实半轴,a2是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m-n=2a2,∴m=a1+a2,n=a1-a2,将它们及离心率互为倒...
推荐
猜你喜欢
- 二根火柴完全燃烧大约可放出几焦的热量?
- 50% (m/V)氢氧化钠溶液怎么配制
- "精灵"用英语怎么说?
- 若在△ABC中,a=m2-n2,b=2mn,c= m2+n2,则△ABC是 三角形.
- 懂数学和几何学的专家过来,有题请教,关于长方体容积.急……!
- pen friend your be can I怎样连词成句
- 用英文介绍猴子
- 有三张卡片上面写着2,4,5.积是双数男生赢,是单数女生赢,女生说不公平为什么?换3,4,5.公平吗