已知圆C:x^2+ y^2-2x+4y-4=0,是否存在斜率为 1的直线 l,使得 l被圆 C截得以弦 AB为直径的圆圆经过原点
解出来x-y-4=0和x-y+1=0最后舍去后一个
我是画图的发现后一个该舍
但是为什么可以解出来这个答案
人气:109 ℃ 时间:2019-11-21 02:13:59
解答
联立求解时,你方程的定义域已经扩大了,因而值域也随之变大,这里的后一个解就是定义、值域变大之后的产物.你在联立方程时,若考虑到定义域,则可以直接舍去后者,而并不用画图了.你试试看
推荐
- 已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
- 已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
- 已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
- 已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
- 已知圆c:x^2+y^2-2x+4y-4=0,问是否存在斜率为1的直线l,使以l被圆c截得弦AB为直径的圆经过原点,若存在,
- 写一篇有关一个人物群体的作文,800字左右.
- 一物体在某行星上做自由落体运动,在连续的两个1s内,下降的高度分别为20m和28m,若该星球的半径为2000km,则环绕该行星的卫星的最小周期为多少?(写出完整步骤)
- 正弦函数y=sinx°的最小正周期T=_,最大值是_
猜你喜欢