已知二次函数y=ax2的图像经过点(2,1),直线y=kx+1与该二次函数对应的抛物线交于
已知二次函数y=ax²的图像经过点(2,1),直线y=kx+1与该二次函数对应的抛物线交于A,B两点,O为坐标原点,记△AOB的面积为S 若S=4,k>0,求出K的值,并借助图像探究满足不等式ax²<kx+1的x的取值范围.
人气:263 ℃ 时间:2020-03-30 04:06:15
解答
二次函数y=ax²的图像经过点(2,1),可得 1=4a,a=1/4
设A(x1,y1),B(x2,y2)
y1=kx1+1,y2=kx2+1
y1-y2=k(x1-x2)
|AB|^2=(x1-x2)^2+(y1-y2)^2=(x1-x2)^2+k^2*(x1-x2)^2=(1+k^2)(x1-x2)^2
|AB|=√(1+k^2)*|x1-x2| (此处的结果应该记住)
O到直线的距离d=|0*k-0*1-1|/√(1+k^2)=1/√(1+k^2)
A,B 为 y=(1/4)x2与直线y=kx+1的交点
(1/4)x^2=kx+1 (1/4)x^2-kx-1=0 Δ=k^2+1
|x1-x2|=(√Δ)/|a| (此可用求根公式或根与系数的关系证明,请自己动手证明一下并记住,填空选择直接应用)
S=4=(1/2)d|AB|=(1/2)[1/√(1+k^2)]*|√(1+k^2)*|x1-x2|
=(1/2)[1/√(1+k^2)]*|√(1+k^2)*|(√Δ)/|a|
=(1/2)[1/√(1+k^2)]*|√(1+k^2)*|(√(1+k^2)/(1/4)
=(1/8)√(1+k^2)=4
得到k=±1,k>0,所以k=1
借助图像探究满足不等式ax²<kx+1的x的取值范围.
作两个图像:y=(1/4)x^2,y=x+1
y=(1/4)x^2 的图像在 y=x+1 的图像下方所对应的x的取值范围即为所需.
推荐
- 如图,已知二次函数y=ax2的图像经过点根号2,3/2,求抛物线函数解析式2求抛物线上的
- 【急求!初三数学二次函数】如图,直线y=kx+b,与抛物线y=ax2交与A(1,m),B(-2,4)与y轴交于点C (1)求抛物线
- 将二次函数y=-2x²+8x-5的图像开口向上,并向上,下平移的一新抛物线,新抛物线与直线y=kx+1有一个交
- 设一次函数y=kx+b的图像是直线l,二次函数y=1/2x^2的图像是抛物线C,
- 证明二次函数y=ax2 a≠0 的图像为什么是抛物线
- 观察食物的包装可以获取这种食品有关(),便于我们了解食物的()()()方法,我们的饮食就不再是()的.包装上的()为我们科学()营养提供了帮助
- 一桶油,连桶重12千克.用去一半后,连桶重7千克.油重多少千克?
- 一种抛硬币游戏的规则是抛掷一枚硬币,每次正面向上得1分,反面向上得2分,求恰好得n分的概率(n为正整数)
猜你喜欢
- 磷酸钙中五氧化二磷含量一般是是多少
- 在平面直角坐标系中,点p(2a+b,3)与点p'(2,a+2b)关于原点对称,求a-b的值
- 小刚和小丽都喜欢集邮,小刚和小丽原有邮票张数的比是1:5.小丽说:“我给他一张以后,我们邮票的张数比就是1:4了.”小刚说:“我们两个共有多少张邮票?”
- The bird fell from the tall tree,it was ______.(died,dead)
- 英语像in front of、behind、next等方向词语,有没有更多像这样的词?请写出.
- 如果我能同他一起去,那就太好了英语翻译
- 观察下列形声字的结构特点,再写几个、
- F1,F2分别是椭圆x2/4+y2=1的两个焦点,问:在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出点P的坐标,如果不存在,说明理由.(焦点在X轴上)