设S1=1+1/(1^2)+1/(2^2),S2=1+1/(2^2)+1/(3^2),S3=1+1/(3^2)+1/(4^2).Sn=1+1/[n^2+1/(n+1)^2].设S=√S1+√S2+√S3+.+√Sn,则S=?(用含n的代数式表示,其中n为正整数)
人气:257 ℃ 时间:2020-01-29 02:19:38
解答
√S1=1+1/(1×2) √S2=1+1/(2×3)….√Sn=1+1/(n×(n+1))
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))=n+[1-1/(n+1)]
= n+n/(n+1)
点点外婆祝你学习进步
推荐
- 设S1=1+1/(1^2)+1/(2^2),S2=1+1/(2^2)+1/(3^2),S3=1+1/(3^2)+1/(4^2).Sn=1+1/[n^2+1/(n+1)^2].设S=√S1+√S2+√S3+.+√Sn,则S=?(用含n的代数式
- 数学高手 请举手之劳 数学题:设S1=1+1/1^2+1/2^2,S2=1+1/2^2+1/3^2,S3=1+1/3^2+1/4^2.Sn=1+1/n^2
- Sn=1^2-2^2+3^2-4^2 …+(-1)^(n-1)n^2,通过计算S1,S2,S3,S4 可以猜测Sn
- 设S1=1+1/1∧2+1/2∧2,S2=1+1/2∧2+1/3∧2,S3=1+1/3∧3+1/4∧2,…,Sn=1+1/n∧2+1/(n+1)∧2设S=√S1+√S2+…+Sn,求S(用含n的代数式表示,其中n为正整数).
- 已知α+β=1,αβ=-1.设S1=α+β,S2=α2+β2,S3=α3+β3,…,Sn=αn+βn (1)计算:S1=_,S2=_,S3=_,S4=_; (2)试写出Sn-2、Sn-1、Sn三者之间的关系; (3)根据以上得出结论计算:α
- 官能团中无论是否有碳原子,都是要选择碳原子数最多的碳为主连
- It is amazing to find out __ we like new people when we know them
- 已知抛物线y=ax^2+bx+c经过点A(5,0)(6,-6)和原点.
猜你喜欢
- 福建的河流径流的季节变化状况如何
- 《三峡》描写了三峡的——,三峡的——,以及深秋时节的——
- 有一道题目是一个多项式减去x的平方+14x-6,小强误当成了加法计算,结果得到2x的平方+3,正确的结果应该是多
- 在正方体ABCD-A'B'C'D'中,E,F为棱AD、AB的中点.求证EF平行平面CB'D'
- Βecause of you,I am afraid of losing you
- What does he look like 可以回答HE is fat and has long hair吗?does不是实意动词吗?为啥要用BE动词?
- 2、甲乙丙 三人的平均体重是53千克,甲乙两人的平均体重是51.5千克,甲比乙重5千克.甲乙丙各重多少千克?
- 英语虚拟语气的句子