已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为
解析中有一点不清楚:
解析是这样的: 过CD作平面PCD,使AB⊥平面PCD,交AB与P,
设点P到CD的距离为h ,
则有 V=1/3×2×h×1/2×2,
当直径通过AB与CD的中点时,h最大为2√3 ,故 V最大4√3/3
为什么当直径通过AB与CD的中点时,h取最大?
题目和解析都也没图..
人气:372 ℃ 时间:2019-09-05 09:19:07
解答
用这个方法算吧设AB的中点为P,CD的中点为Q,球心为O.易知P,Q必在一个球心也为O但半径比球O小的球面上(即较小一点的同心球),设其半径为r.设CD与平面ABQ所成的角为a,设PQ与AB所成角为b,则有V_(ABCD)=(1/3)*S_(ABQ)*CD...
推荐
猜你喜欢
- 一项工程,甲独坐要9小时,乙独做要12小时,如果甲先做1小时,然后乙接替甲做1小时,再由甲接替
- 冷水吸收的热量:Q吸=cm(t1-t0),∵Q吸=Q放,∴热水放出的热量:Q放=c2m(t0′-t1)=cm(t1-t0),
- 英语翻译
- 4a-2b+c=o,16a+4b+c=0,(4ac-b^2)/(4a)=9 怎么解
- 已知两个数的积是3072,最大公约数是16,求这两个数答案?
- jean is as busy as a bee的意思?
- He is running这句话为什么run要加ning
- 棱长六米的正方体水池占地面积是36平方米.是对还是错