拉格朗日中值定理证明题
设f(x)在[0,1]上连续.在(0,1)内可导.且f(1)=0..求证:存在ξ属于(0,1),使f'(ξ)=-f(ξ)/ξ.
人气:303 ℃ 时间:2020-01-27 15:45:33
解答
设F(x)=xf(x),则F(0)=0=F(1),且F'(x)=f'(x)x+f(x),故在(0,1)上必存在一点ξ使F'(ξ)=0,则F'(ξ)=f'(ξ)ξ+f(ξ)=0,则有f'(ξ)=-f(ξ)/ξ.
推荐
猜你喜欢
- 最快的速度成语
- 智者千虑必有一失是什么意思
- 不容易传热的物体叫做什么,如( ))等物体
- 27^1-log(9)(4)=多少,需要分析
- 圆形,直径1.5m,5m.等于几立方?求公式
- 已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),c=(√3,-1),其中x属于R 当向量a垂直向量b,求x值集合
- 已知6-2x的平方根+y+64的绝对值=0,求(x+y)的2012次方的值
- 为什么北半球看北极星的仰角等于观测点的纬度?