函数y=log1/2(12-4x-x²)的递增区间是?
人气:286 ℃ 时间:2020-01-30 14:43:31
解答
定义域12-4x-x²>0
x²+4x-12<0
(x+6)(x-2)<0
-6<x<2
因为对于y=log1/2 x在x>0上是减函数
所以要使y=log1/2(12-4x-x²)单调递减,只需求出12-4x-x²的增区间【同增异减】
12-4x-x²=-(x+2)²+16的递增区间为(-6,-2]
所以函数y=log1/2(12-4x-x²)的递增区间是(-6,-2]
推荐
猜你喜欢
- We walk( )the bridge and get to school every day
- I look good in red,so I _____ red.A.prefer B.would rather
- 原核细胞(无线粒体)中ATP只能依靠无氧呼吸产生——这句话为什么是错误的?
- 万户那种勇于实践的探索精神,人们的内心深处受到了极大的震撼和鼓舞(改病句)
- 设事件A,B 独立且互不相容,则min{P(A),P(B)}=()?写出解题步骤啊?知道答案但不知道为什么,答案是0
- 城镇污水处理厂进水标准
- 若实数ρ,θ满足3ρcos∧2 (θ)+2ρsin∧2 (θ)=6cosθ,则ρ的平方的最大值为?
- 筑路大军同心协力,克服重重困难,终于胜利贯通了(修改病句)