证明:在三角形ABC中,cosA
人气:286 ℃ 时间:2019-12-25 11:48:55
解答
题目应该是这样子吧:
证明:在锐角三角形ABC中,cosA 90°,
∴B>90°-A,A >90°-B,
正弦函数在(0°,90°)上是增函数,
所以sin B> sin(90°-A),sinA >sin(90°-B),
即sin B> cosA,sinA >cosB
原题得证.
推荐
- 在三角形ABC中,若sinA*sinB
- 在三角形ABC中,若sinA*sinB
- 在△ABC中,若sinA+sinB=sinC(cosA+cosB). (1)判断△ABC的形状; (2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.
- 在△ABC中,若sinA+sinB=sinC(cosA+cosB). (1)判断△ABC的形状; (2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.
- 在△ABC中,若sinA+sinB=sinC(cosA+cosB). (1)判断△ABC的形状; (2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.
- 哪些是映射,那些映射是函数,那些不是?为什么?(1)设A={1,2,3,4},B={3,5,7,9},对应关系是f(x)=2x=+1,x属于A;(2)设A={1,4,9},B={-1,1,-2,2,-3,3},对应关系是‘A中的元素开平方’
- 这三张卡片上分别写着2,4,5. (1)小红为什么说不公平?积是单数的可能性是多少? (2)把这三个数字换成3,4,5,你觉得公平吗?
- 把一个底面直径是8厘米,高10厘米的圆柱体,割拼成一个近似的长方体后,表面积增加了多少平方厘米?
猜你喜欢