在直角坐标系xoy中,曲线C1的参数方程为:x=2cosa y=2+2sina(a为参数) M是C1的动点,P点满足
向量OP=2倍的向量OM,P点的轨迹方程为曲线C2.
求C2的方程
在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π/3与C1的异于极点的坐标的交点为A,与C2的异于极点的交点为B,求AB的模长
人气:182 ℃ 时间:2019-08-22 17:25:16
解答
极坐标下的函数表示极径ρ(坐标点到原点的距离)与极角θ(原点到坐标点的矢量与极轴的夹角,类似直角坐标系中的倾角)的关系,也就是说在点移动产生c1 ,c2轨迹的过程中,原点到动点的矢量的长度ρ随着该矢量的倾角θ在变化,通过联立方程的手段解出射线与c1c2的两个交点的(θ,ρ)分别是(π/3,4sin π/3)(π/3,8sin π/3)或者简写为(π/3,2√3)(π/3,4√3),由于两点在一条射线上,所以直接将两点到原点的距离相减得到两点间的距离2√3.
推荐
- 在直角坐标系XOY中,曲线C1的参数方程为X=2COSα,Y=2+2SINα,MC1上的动点P,P点满足
- x=根号(3)+2cosa ,y=1+2sina (a为参数 0
- 在直角坐标系xoy中,已知曲线C1:x=t+2,y=1-2t,(t为参数)
- 在直角坐标系中圆C的参数方程为x=2cosa,y=2+2sina(a为参数),以原点O为极点,
- 在直角坐标系xOy中,曲线C1的参数方程为x=cosα,y=1+sinα(α为参数).在极坐标系(与直角坐标系xOy中取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ(cosθ-sinθ)+1=0,则C1与C2
- 设A为椭圆x^2/a^2+y^2/b^2=1上的一动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,恰好有|AF1|:|AF2|=3:1 ,(1)求椭圆离心率(这一问跳过)
- Tom has(a nice box).对括号部分进行提问
- 高二上学期化学问题
猜你喜欢