设f(x)是以a为周期的周期函数,证明∫a→a+lf(x)dx的值与a无关
人气:312 ℃ 时间:2019-10-18 03:09:57
解答
t = a + x,x:a->a+l,t:0->l.dt = dx.
f(t-a)=f(t).
S_{x:a->a+l}f(x)dx = S_{t:0->l}f(t-a)dt = S_{t:0->l}f(t)dt,与a无关.
推荐
- 设f(x)是以l为周期的连续函数,证明∫a到a+lf(x)dx的值与a无关
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx
- 设f(x)是以l为周期的连续函数,证明§a,a+l f(x)dx与a无关
- 以T为周期的连续函数f(x)证明:∫(a+T,a)f(x)dx=∫(T,0)f(x)dx,
- 设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
- What is your home town like?
- thank you ______me with my english you are welcome A for help B to help C to helping D for helping
- 化学中“C+O2==CO2”和“CO2+C==2CO”等不等于“2C+O2==2CO”
猜你喜欢