A,B为n阶实对称矩阵,且B是正定矩阵,证明:存在实可逆矩阵C使得C'AC和C'BC都是实对角矩阵.C'表示C的转置
人气:349 ℃ 时间:2020-06-03 11:00:47
解答
B正定,存在可逆阵D,使得D’BD=E,记M=D‘AD是对称阵,故存在正交阵Q,使得Q'MQ是对角阵,令C=DQ,则C'AC=Q'D'ADQ=Q'MQ是对角阵,C'BC=Q'D'BDQ=Q'EQ=E是对角阵.其实我想知道这题到底想考什么。没什么,就是看你对正定阵的掌握程度如何。
推荐
- 证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2
- 设A是n阶实对称矩阵,证明A是正定矩阵的充分必要条件是A的特征值都大于0
- 设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.
- A,B为正定矩阵,C是可逆矩阵.证明A-B为是对称矩阵.
- 设A,B均是n阶实对称矩阵,且A是正定矩阵,B是半正定矩阵,证明|A+B|>|B
- 1选A,2选B,我不确定答案,
- Would you like to fly a kite with me?Sorry,I h_______ ever have time for a game
- 取三支干净的小试管,试管A盛有开始蒸馏出的液体,试管B装有蒸馏一段时间后收集的,试管C放入没蒸馏的硬水
猜你喜欢