> 数学 >
已知ab不等于0 证明a+b=1的充要条件是a^3+b^3+ab-a^2-b^2=0 希望能人们帮帮忙
人气:249 ℃ 时间:2020-04-08 09:24:42
解答
由于ab≠0,所以a^2-ab+b^2=[a-(b/2)]^2+3b^2/4>0.
因为
a^3+b^3+ab-a^2-b^2
=(a+b)(a^2-ab+b^2)-(a^2-ab+b^2)
=(a+b-1)(a^2-ab+b^2)
所以a+b=1等价于a^3+b^3+ab-a^2-b^2=0.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版