>
数学
>
定义在R上的偶函数y=f(x)在[0,+∞)上递减,且
f(
1
2
)
=0,则满足
f(lo
g
1
4
x)<0
的x的集合为( )
A.
(−∞,
1
2
)∪(2,+∞)
B.
(
1
2
,1)∪(1,2)
C.
(
1
2
,1)∪(2,+∞)
D.
(0,
1
2
)∪(2,+∞)
人气:321 ℃ 时间:2019-08-18 18:14:35
解答
因为定义在R上的偶函数y=f(x)在[0,+∞)上递减,且
f(
1
2
)
=0,则满足
f(lo
g
1
4
x)<0
⇔
f(|
log
1
4
x|)<0=f(
1
2
)
⇔
|
log
1
4
x|>
1
2
⇔
log
1
4
x≥0
log
1
4
x>
1
2
或
log
1
4
x<0
−
log
1
4
x>
1
2
⇒0<x<
1
2
或x>2
故选D.
推荐
定义在R上的偶函数y=f(x)在[0,+∞)上递减,且f(12)=0,则满足f(log14x)<0的x的集合为( ) A.(−∞,12)∪(2,+∞) B.(12,1)∪(1,2) C.(12,1)∪(2,+∞) D.(0,12)∪(2,
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1/2)=0,则满足f(log1/4x)<0的集合为 _ .
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1/2)=0,则满足f(log1/4x)<0的集合为 _ .
已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log1/2(x+1). (1)求f(0),f(-1); (2)求函数f(x)的表达式; (3)若f(a-1)-f(3-a)<0,求a的取值范围.
已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log1/2(x+1). (1)求f(0),f(-1); (2)求函数f(x)的表达式; (3)若f(a-1)-f(3-a)<0,求a的取值范围.
函数y=tan(2x+π/3)+arctanx定义域 速求速求!
12克的镁和12克氧气反应最多可得到多少氧化镁?怎么个氧过量?百度上其他答案我看不太懂...
如图,在Rt△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q,分别从B,C两点同时出发,其中点P沿BC向中点C运动,
猜你喜欢
当x=3+1时,x2-2x-3的值是_.
在三角形ABC中,已知角B等于60°,b=4,三角形的面积=根号3,求三角形的周长
有蜘蛛,蜻蜓,禅三种动物共20只,共有腿124条,翅膀22对,问蜻蜓有多少只?
如图,在△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,△ABC是等腰三角形吗?为什么?
已知函数f(x)=x+1/x,(1)用定义证明:f(x)在(0,正无穷)上是单调递增函数 (2)
The rain began to beat heavily ___ the windows
导数(很简单的一个)
属于集约型的和属于粗放型的有哪些?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版