根据地球上两个地点的经度和纬度,如何获得这两点的球面距离或直线距离?有无定理公式?
根据地球上两个地点的经度和纬度,如何获得这两点的球面距离或直线距离?
有无定理公式?
假设前提是两个地点均在地表面的零海拔,且地球为理想球体.
假设A点的经度、纬度分别为λA和ΦA, B点的经度、纬度分别为λB和ΦB,d为距离.
D = arc cos((sin北纬A×sin北纬B)+(cos北纬A×cos北纬B×cosAB两地经度差绝对值) )×地球平均半径
= 6371.004×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
其中地球平均半径为6371.004 km,D的单位为km
-------------------------------------------------------
至于网上流传的以下公式,经推导验证都是错误的.
D=111.12×cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}
D=111.12×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
D = arc cos(sin北纬A×sin北纬B+cos北纬A×cos北纬B×cosAB两地经度差绝对值)÷360×2PI×6371
验证条件:
纬度只差1度时的距离为
D1 = 地球经线或赤道周长÷360
= 6371.004×2×3.1415926536÷360
= 111.19499645809008 km
约111.2千米.
人气:455 ℃ 时间:2019-11-01 12:15:24
解答
假设前提是两个地点均在地表面的零海拔,且地球为理想球体.
假设A点的经度、纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离.
D = arc cos((sin北纬A×sin北纬B)+(cos北纬A×cos北纬B×cosAB两地经度差绝对值) )×地球平均半径
= 6371.004×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
其中地球平均半径为6371.004 km,D的单位为km
-------------------------------------------------------
至于网上流传的以下公式,经推导验证都是错误的.
D=111.12×cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}
D=111.12×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
D = arc cos(sin北纬A×sin北纬B+cos北纬A×cos北纬B×cosAB两地经度差绝对值)÷360×2PI×6371
验证条件:
纬度只差1度时的距离为
D1 = 地球经线或赤道周长÷360
= 6371.004×2×3.1415926536÷360
= 111.19499645809008 km
约111.2千米.
推荐
- 地球的经度与纬度!
- 在地球上,纬度36度、经度117度的地点有()个
- 在地球上,纬度36度、经度117度的地点有()
- 地球表面北纬60°圈上有A、B两点,它们的经度差为180°,A、B两点沿纬度圈的距离与地球表面A、B两点最短距离的比是_.
- 在地球上,纬度36,经度117的地点有几个
- 古代的文学家、军事家、书法家都有谁?不用全部写.
- 求:初中的 五言律诗 七言律诗 古诗词 宋词 元曲各一首
- 2.10,1 ,9,6,8,11,7,___,...What comes next?
猜你喜欢