log2[log3(log4x)]=log3[log4(log2y)]=0,则x+y=______.
人气:313 ℃ 时间:2020-01-26 01:43:11
解答
由log2[log3(log4x)]=log3[log4(log2y)]=0,
得log3(log4x)=log4(log2y)=1,
即log4x=3,log2y=4,
解得:x=64,y=16.
∴x+y=64+16=80.
故答案为:80.
推荐
- log2[log3(log4x)]=log3[log4(log2y)]=0,则x+y=_.
- 已知log2[log3(log4x)]=log3[log4(log2y)]=0,求x+y
- 若log2(log3(log4x)=log3(log4(log2y)=log4(log2(log3z)=0则x+y-z=多少
- log2[log3(log4x)]=log3[log4(log2y)]=0求x+y的值,
- log3(log4x)=log4(log2y)=log2(log3z)=1
- 观察2,-4,6,-8,10,-12,14,这组数观察规律答出第99,100个数
- 一花一世界,一木一浮生,一方一净土,
- 如图,二次函数y=2/3x²-1/3x,图像过△ABC三个顶点,其中A{-1,m},B{n,n}
猜你喜欢