> 数学 >
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.

(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC⊥平面PBD.
人气:409 ℃ 时间:2020-02-05 15:25:15
解答
(Ⅰ)证明:设AC∩BD=H,连结EH.在△ADC中,∵AD=CD,且DB平分∠ADC,∴H为AC的中点.又由题设,E为PC的中点,故EH∥PA.又EH⊆平面BDE,且PA⊄平面BDE,∴PA∥平面BDE.…(6分)(Ⅱ)证明:∵PD⊥平面ABCD,AC...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版