证明:与全体n阶方阵都乘法可交换的矩阵一定是数量阵.
人气:180 ℃ 时间:2019-11-08 15:11:29
解答
写起来很麻烦.这是个充要条件.设n阶方阵为A=(aij),设B=(bij)与A可交换,AB=BA,展开比较就行,会发现B的非主对角元全是0,主对角元是同样的数
推荐
猜你喜欢
- The farmer soon came back to get his shoes,but when he put his foot into one of his shoes and felt something hard,he fou
- 求y=lnx在点M(e,1)的切线方程和法线方程.
- It feel like three
- 骨骼不含钙有没有无机盐
- 硫酸铵和硫酸铁铵的ph值大小
- A.refresh B.renew C.stimulate D.encourage
- 如图所示,在△ABC中,AB=AC,点MN分别在BC所在的直线上,且AM=AN,BM与CN相等吗?两种解答方法.
- 巳知电压为380v功率45千瓦,用多大的空气开关,线的大少,是怎么算的!请高手多指教谢谢了.