已知数列{an}满足an+1=(3an+1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
题目错了……重发
已知数列{an}满足an+1=(an-1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
人气:491 ℃ 时间:2019-08-19 20:00:57
解答
a(n+1)=[a(n)-1]/[a(n)+3],
a(n+1)+1=[a(n)-1]/[a(n)+3] +1=[2a(n)+2]/[a(n)+3]=2[a(n)+1]/[a(n)+3],
若a(n+1)+1=0,则a(n)+1=0,...,a(1)+1=0,与a(1)=-1/3矛盾.
因此,a(n)+1 不为0.
1/[a(n+1)+1] = [a(n)+3]/[2a(n)+2] = [a(n)+1+2]/[2a(n)+2] = 2/[2a(n)+2] + [a(n)+1]/[2a(n)+2]
=1/[a(n)+1] + 1/2,
{1/[a(n)+1]}是首项为1/[a(1)+1]=1/[1-1/3]=3/2,公差为1/2的等差数列.
1/[a(n)+1] = 3/2 +(n-1)/2 = (n+2)/2,
a(n)+1=2/(n+2),
a(n)=2/(n+2) - 1 = -n/(n+2)
推荐
- 已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列
- 数列an满足an+1=3an+n,是否存在适当的a1,使{an}是等差数列,说明理由
- 在数列{an}中,a1=3,an+1=3an+3n+1.(1)设bn=an3n.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.
- 已知数列{an}中,a1=1,a(n+1)=an/3an+1,(1)求证数列{1/an}为等差数列 (2)求数列{an}的通项公式.
- 已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*). (Ⅰ)证明:数列{an+1-an}是等比数列; (Ⅱ)求数列{an}的通项公式.
- -1到-5之间只有3个负数._.(判断对错)
- 一道六年级语文题~~快来~急
- different,in,Shanghai,was,many,years,ago,life,very连词成句
猜你喜欢