已知an=2n-1,an=b1/2+b2/2^2+b3/2^3+……+bn/2^n,求数列bn的前n项和Sn
人气:436 ℃ 时间:2020-03-23 06:31:40
解答
an=2n-1
则a(n-1)=2n-3,相减得an-a(n-1)=2
而同时(n≥2)
an=b1/2+b2/2^2+b3/2^3+……+bn/2^n
a(n-1)=b1/2+b2/2^2+b3/2^3+……+b(n-1)/2^(n-1)
相减得
an-a(n-1)=bn/2^n
即bn=2^(n+1)
当n=1,a1=b1/2
→b1=2a1=2
故bn=2^(n+1),n≥2
bn=2,n=1
推荐
- 数列{an}的前n项和为Sn且Sn=n(n+1) 1 若数列{bn}满足an=b1/(3+1)+b2/(3^2+1)+b3/(3^3+1)+……bn/(3^n+1)
- 已知a1=1,a2=4,an+2=4an+1+an,bn=an+1an,n∈N* (Ⅰ)求b1,b2,b3的值; (Ⅱ)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证:Sn≥17n.
- 设数列{an}是一等差数列,数列{bn}的前n项和为Sn=2/3(bn−1),若a2=b1,a5=b2. (1)求数列{an}的通项公式; (2)求数列{bn}的前n项和Sn.
- 已知正数数列{an}的前n项和为Sn,且有Sn=1/4×(an+1)²,数列B1,b2-b1,b3-b2,...,bn-bn-1是首相
- 已知an=2n-1,数列{bn}满足:b1/2+b2/2^2+...+bn/2^n=an,求数列{bn}的前n项和Sn
- 大海对鱼游正如天空对() 勇士对( ) 正如懦夫对失败懒惰对贫困正如()对富裕()对大道正如崎岖对山路
- 已知函数f(x)=lnx/x,试求f(x)在[a,2a](a>0)上的最小值
- A为3阶方阵,|A|=-2,A*是A伴随矩阵,则|4A-1+A*|为多少
猜你喜欢