求证一列高数数列极限题:lim(3n^2+n)/(2n^2-1)=3/2
人气:362 ℃ 时间:2019-12-10 11:22:45
解答
用N-ε语言
对于任意ε>0
存在N=max(1,5/2ε)
当n>N时
|(3n^2+n)/(2n^2-1)-3/2|
=|(6n^2+2n-6n^2+3)/[2(2n^2-1)]|
=(2n+3)/[2(2n^2-1)]
因为n>N>=1,所以2n+3<2n+3n=5n
2n^2-1>2n^2-n^2=n^2
(分子更大,分母更小的数更大)
<5n/[2(n^2)]
=5/2n
<5/2(5/2ε)
=ε
由极限定义
lim n->∞ (3n^2+n)/(2n^2-1)=3/2
推荐
猜你喜欢
- 春季是一年中的第一个季节,是一年的开始.这句话用法语怎么翻译,急用.
- 4分之一加3分之一的和乘于12等于?
- 强酸为什么可以制弱酸
- you are in trouble,ask the policeman for help(用if合并句子)
- 一块平行四边形的铁周长是82厘米,一条底边长16厘米,这条底边的高是20厘米
- 1.果品店批发店存放的苹果是香蕉的3倍,春节前夕,平均每天批发出250千克香蕉,600千克苹果,几天后,香蕉全部批发完,苹果剩750千克,果品店原存放的苹果和香蕉各多少千克?
- (3.2+0.128)/0.8 简算
- 中译英:那是他们第一次见面,理查德决心要给那个女孩子留下一点儿印象(be determined to do)