设A是可逆矩阵,证明(A*)^(-1)=(A^(-1))^*
人气:380 ℃ 时间:2020-02-06 13:49:52
解答
AA*=A*A=|A|E(*为上角标表示伴随矩阵)有A*(A/|A|)=E所以(A*)^-1=A/|A|……(1)A^-1(A^-1)*=|A^-1|E(其中|A^-1|=1/|A|)故A^-1(A^-1)*=E/|A|两边左乘A得(A^-1)*=A/|A|……(2)由(1)(2)式知(A*)^-1=(A^-1...
推荐
- 一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求其逆阵.
- 设矩阵A可逆,证明其伴随阵A*也可逆,且(A*)-1=(A-1)*
- 设矩阵A可逆,证明(A*)-1=|A-1|A.
- 设矩阵A,B及A+B都可逆,证明A^-1+B^-1也可逆,并求其矩阵
- 设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,
- 求问一道高一化学关于物质的量的题目!
- 方程3xy²+2=0中的系数是什么?次数是什么?方程中的常数项是什么、、?
- 有一张5元,四张2元,八张1元的人民币,要拿出8元,有几种拿法?
猜你喜欢