> 数学 >
已知三角形ABC中,sinA=tanB,a=b(1+cosA)判断三角形ABC的形状
不要做辅助线
人气:336 ℃ 时间:2019-08-17 12:49:58
解答
解:由sinA=tanB=sinB/cosB,又由正弦定理可得b=acosB=a(a^2+c^2-b^2)/(2ac)(此处用余弦定理)整理得,b^2+2bc=a^2+c^2再对a=b(1+cosA)用余弦定理得,b^2+2bc=2ac+a^2-c^2,故a^2+c^2=2ac+a^2-c^2整理得a=c故三角形ABC为...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版