在面积为1的三角形PMN中,tanPMN=1/2,tanMNP=-2,建立适当坐标系,求以M,N为焦点,且过点P的椭圆方程.
人气:155 ℃ 时间:2020-02-06 05:47:11
解答
不妨设 M,N都在x轴上,关于原点对称
tan(M+N)=(tanM+tanN)/(1-tanMtanN)=(1/2-2)/(1+1)=-3/4
所以 tanP=3/4=2tan(P/2)/【1-tan²(P/2)】
tan(p/2)=-3或tan(P/2)=1/3
因为(P/2)是锐角
tan(P/2)=1/3
焦点三角形面积公式 b²tan(P/2)=1
b²=3
设三角形高为h
[h/tanM-h/(-tanN)]*h/2=1
3/4h²=1
h²=4/3
2c=h/tanM-h/(-tanN)=h*(3/2)
4c²=3
c²=3/4
a²=b²+c²=15/4
方程:x²/(15/4)+y²/3=1
推荐
- (1)长轴长是6,离心率是2/3的椭圆标准方程?
- 椭圆的一般方程与标准方程的区别
- 已知椭圆 x^2/ a^2 + y^2/ b^2=1(a,b大于0的两个焦点分别为F1(-c,0),F2 (c,0)(C大于0)
- 已知椭圆C1:x2/a2+y2/b2=1的左右两焦点为F1,F2,离心率为1/2,抛物线C2:y2=4mx(m>0)与椭圆C1有公共焦点F2(1,0),求椭圆和抛物线方程.
- 某椭圆方程为x^2-y^2/9=1,该方程是否问为椭圆的标准方程?x^2下面的分母1要不要写上去?
- 坝内水位175米,压强1.75×10五次方.求底部受到的压强
- 小明从家到学校上课,开始时每分钟走50米的速度,走了2分钟,这时它想:若根据以往上学的经验,再按这个速度走下去,将要迟到2分钟,于是他立即加快速度,每分钟多走10米,结果小明早到2分钟,小明家到学校的路程有多远?
- 带有 i 的单词有哪些?
猜你喜欢