已知函数f(x)=【1-4/(2a^x+a)】(a>0且a不等于1)是定义在R上的奇函数
(1)求a的值 (2)当X属于(0,1>时tF(x)>=2^x-2恒成立,求实数t的取值范围
我做的时候 是先讨论了题干中的区间 把分母除到不等式的右边 然后求导 算MAX 作出T大于等于3
因为是奇函数 还有对称区间 我也是这么做的
THANKS
人气:179 ℃ 时间:2020-02-23 05:20:45
解答
1.因为f(x)定义在R上的奇函数
所以f(0)=0
则a=2
2.
所以 f(x) = 1 - 2/(2^x + 1)
因为 2^x >0 ,所以 2^x + 1 >1,
所以 0<2/(2^x + 1)<2
所以 0>- 2/(2^x + 1)>-2
所以 1>1 - 2/(2^x + 1)>-1
因此 值域 为 (-1,1)
f(x) = 1 - 2/(2^x + 1) = (2^x-1)/(2^x+1)
tf(x)≥2^x-2 即 t(2^x-1)/(2^x+1)≥2^x-2
即 t ≥(2^x+1)(2^x-2)/(2^x-1)
=[(2^x-1)^2 + (2^x-1) - 2]/(2^x-1)
=(2^x-1) + 1 - 2/(2^x-1)
要想恒成立,即要比它的最大值大.
在当x属于(0,1],(2^x-1)为增函数,- 2/(2^x-1),也为增函数,所以 (2^x-1) + 1 - 2/(2^x-1) 为增函数,所以 当 x = 1时 为最大值
此时 = 2 - 1 + 1 - 2/(2 - 1) = 0
所以只需 t > 0 即可
所以 t 的范围 为 (0,+∞ )
推荐
- 已知函数f(x)=【1-4/(2a^x+a)】(a>0且a不等于1)是定义在R上的奇函数
- 已知函数f(x)=1-[4/(2a^x+a](a>0且a不等于1)是定义在(负无穷、正无穷)上的奇函数.(1)求a的值,(2...
- 已知f(x)是定义在[-1,1]上奇函数,且f(1)=1,若a、b€[1,-1],a+b不等于0,且f(a)+f(b)/a+b>0.(1)判断f(x)在[-1,1]上的单调性,并证明你的结论.(2)若f(x)小于等于m^2-2a
- 已知f(x)是定义【-1,1】上的奇函数,且f(1)=1,若a、b属于【-1,1】,a+b不等于0时,有f(a)+f(b)/(a+b)>0.
- 已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b属于[-1,1],a+b不等于零,有{f(a)+f(b)}/(a+b)>0成
- 扑克牌除大小王两张牌分别代表太阳,月亮,余52张,与一年的什么数相等
- 2袋土豆平均每袋重124五分之二,如果一袋重100千克,第二袋重多少
- 非谓语动词中,做状语时如何看出这是个伴随状语?
猜你喜欢