> 数学 >
已知函数f(x)=2sin(1/2x+π/3)+1,x∈R的最大值和最小值分别为3和-1
(3)若函数F=f(x)+lnk在【-π/6,π】上有且只有两个零点,实数k的值
人气:197 ℃ 时间:2019-08-19 00:18:57
解答
答:
f(x)=2sin(x/2+π/3)+1
最大值为2+1=3,最小值为-2+1=-1
F(x)=f(x)+lnk=2sin(x/2+π/3)+1+lnk=0在[-π/6,π]上有且仅有2个零点
所以:-(1+lnk)=2sin(x/2+π/3)
因为:-π/6<=x<=π
所以:-π/12<=x/2<=π/2,-π/12+π/3<=x/2+π/3<=π/2+π/3
所以:π/4<=x/2+π/3<=5π/6
所以:sin(5π/6)<=sin(x/2+π/3)<=sin(π/2)
所以:1/2<=sin(x/2+π/3)<=1
所以:2*sin(π/4)<=-(1+lnk)<2*1
所以:√2<=-(1+lnk)<2
所以:-2<1+lnk<=-√2
所以:-3解得:1/e^3本题需要绘制简图结合理解
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版