如果函数f(x)在(a,+∞)内可导,且limf(x)存在,证明:limf'(x)=0
其中x都是趋向于正无穷大的。
答案的提示是在[x,x+1]上,用拉格朗日中值定理
人气:114 ℃ 时间:2019-09-20 09:58:23
解答
在[x,x+1]上,用拉格朗日中值定理 f(x+1) - f(x) = f '(ξ) * 1 x < ξ +∞) [f(x+1) - f(x) ]
= lim(x->+∞) f '(ξ) = lim(ξ->+∞) f '(ξ)
lim(x->+∞) f '(x) = 0lim【f(x+1) - f(x)】为什么是等于0的??lim(x->+∞) f(x)存在, 设其值为A,lim(x->+∞) [f(x+1)-f(x)]= A - A = 0
推荐
- 设f(x)在(a,+∞)内可导,且limf(x)=A>0(当x-->+∞),证明limf(x)=+∞(当x-->+∞)
- 设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导
- 设函数f(x)在x=0处连续,在(0,c)(c>0)内可导,且limf(x)'=A,x趋向于0,证明:f+(0)'存在,且f+(0)'=A
- 若f(x)在x=0处连续,且当x趋近于0时,limf(x)/x 存在,证明f(x)在x=0处可导.
- 若函数f(x)在x=0处连续且limf(x)/x(x趋向于零时)存在,试证f(x)在x=0处可导
- 九、 线性表的链式存储结构与顺序存储结构比较有何特点?这两种结构分别适合在什么情况下使用?
- 四项因式分解的题.
- 已知一个多项式P=2a2-8ab+17b2-16a-4b+2077,当a,b为何值时,P有最小值?并求出P的最小值.
猜你喜欢
- 已知等比数列{an}的公比为-1/2,则lim(a1+a2+...+an)/(a2+a4+...+
- point down
- 数学判断正误
- 若3x2-1=x,求9x4+12x3-2x2-7x+2006的值
- 甲乙两车同时从AB两地相对开出,甲车每小时行45千米,乙车每小时行60千米.两车正好在距中点45千米处相遇,求A
- What do you think of Jim? I think he is ( an )hon
- 对……有很大/没有影响 英语翻译
- 1/2,-1/6,1/12,-1/20……请你找出其中规律,并按此规律填空,第21个数是?