长方体ABCD-A1B1C1DI中,AB=AD=1,AA1=2,点P为DD1的中点.求证 直线PB1垂直于平面PAC
人气:257 ℃ 时间:2019-12-15 14:45:25
解答
△PB1C中,先求出三边的长度,使用勾股定理可得PB1⊥PC,同理可证PB1⊥PA,这样,PB1垂直于平面PAC的2条相交直线,所以直线PB1⊥平面PAC.
PC²=2,PB1²=3,B1C²=5,所以△PB1C是直角三角形.PB1⊥PC,
同理PB1⊥PA,所以直线PB1⊥平面PAC
推荐
- 已知长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点,求证平面PAC⊥平面BDD1
- 如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求证: (1)直线BD1∥平面PAC; (2)平面BDD1⊥平面PAC; (3)直线PB1⊥平面PAC.
- 长方体ABCD-A1B1C1D1中AB=AD=1AA1=2,点P为DD1的中点,求证直线PB1垂直平面PAC,不懂如何求得PB1的长度
- 如图,ABCD是菱形,PA垂直平面ABCD,PA=AD=2,∠BAD=60度,(1)证明:平面PBD垂直平面PAC(已会做了)
- 四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PCD垂直平面PAC
- 已知正项等差数列an的前n项和为sn,若s3=12,2a1,a2,a3+1成等比数列.求an 及bn=an/3^n 的前n项和Tn
- 已知二次函数图像的对称轴是x=-3,与x轴交与点(-1,0),与y轴交于(0,10)求解析式
- 小明、小强、小海三位朋友合乘一辆出租车外出,大家约定根据各人坐车路程的长短分担车费.小明在全程的4分之1处下车,小强在全程的5分之3处下车,只有小海坐到终点,小海服了车费37元,小明,小强应付小海多少车费?
猜你喜欢