已知抛物线y^2=4x,椭圆x^2/9+y^2/m=1,它们有共同的焦点F2.
求m的值
如果P是两曲线的一个公共点,且F1是椭圆的另一个焦点,求角PF1F2的面积
人气:421 ℃ 时间:2019-11-10 15:10:42
解答
抛物线的焦点是(1,0)
c^2=a^2-b^2
c^2=9-m
因为c=1 带入 m=8
把两个方程连列 y^4+18y^2=144
求出y F1F2=2c=2
面积s=2*|y|*1/2=|y|
推荐
- 抛物线方程为y^2=4x,椭圆方程为x^2/9+y^2/b=1,他们有共同焦点F2
- 已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y^2=4x的焦点,
- 已知抛物线y^2=4x与椭圆x^2/8+y^/m=1有共同的焦点F
- 已知抛物线y^2=4x,椭圆x^2/9+y^2/m=1,它们有共同的焦点F2,椭圆的另一个焦点为F1,点P为抛物线与椭圆在第一象限的交点,求cos角PF1F2与cos角PF2F1的积
- 抛物线y^2=4x与椭圆x^2/9+y^2/k=1有公共焦点F1,F2为椭圆的另一个焦点,P是两曲线的一个交点,
- 1.——that he stayed at home all day without meeting anyone.
- 我数学还不错,但英语很烂,永远在75分左右;还有地理烂啊!我是广东省高二文科生..
- 甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少.
猜你喜欢