c |
a+b |
b |
a+c |
∴a2+ab+ac+bc=c2+ac+b2+ab
∴b2+c2-a2=bc
∴2bccosA=ab
∴cosA=
1 |
2 |
∵0°<∠A<180°
∴∠A=60°
(2)∵
c |
b |
2+
| ||
4 |
∴令b=4t,c=(2+
3 |
cosA=
b2+c2−a2 |
2bc |
16t2+(7+4
| ||
8(2+
|
1 |
2 |
解得t=1
∴b=4.
c |
a+b |
b |
a+c |
c |
b |
2+
| ||
4 |
15 |
c |
a+b |
b |
a+c |
1 |
2 |
c |
b |
2+
| ||
4 |
3 |
b2+c2−a2 |
2bc |
16t2+(7+4
| ||
8(2+
|
1 |
2 |